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Following an earlier paper, the equilibrium of an axisymmetric sessile drop resting 
on a thin, elastic plate has been considered using the minimum free energy 
hypothesis. A consequence is that although Young’s equation is still obeyed at the 
triple line when considering the true contact angle, the apparent contact angle (i.e. 
with respect to the horizontal) invokes parameters other than simply the interfacial 
free energies, such as the drop volume and elastic properties of the solid. A 
quantitative estimate of apparent contact angle dependence on plate thickness has 
been made in the case of small drops. Finally, consideration of stability, again using 
the minimum free energy hypothesis, suggests that the axisymmetric configuration 
may not always be the most likely. This, it is conjectured, may have consequences in 
cell biology. 

KEY WORDS Contact angle; equilibrium; sessile drop; stability; thin elastic plates; 
Young’s equation. 

INTRODUCTION 

In a recent paper,’ the present author considered the contact angle 
equilibrium of axisymmetric, sessile, liquid drops on thin elastic 
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262 M. E. R. SHANAHAN 

solids. The general differential equations were obtained by a 
variational treatment, using the hypothesis that the free energy of 
the system solid/liquid/surrounding fluid will be a minimum at 
equilibrium, and these were applied to two model solids; a thin 
plate and a membrane. Whilst the latter was dealt with correctly, 
the treatment of the thin plate was a little cursory and one of the 
purposes of this contribution is to correct a misinterpretation of the 
previous work. It is found that the true contact angle obeys Young’s 
equation.’ Nevertheless, the apparent contact angle, i.e. that 
measured with respect to the horizontal (or undeformed solid) 
depends on plate thickness. We shall consider quantitatively mod- 
ifications to this apparent contact angle in the simplified case in 
which gravity can be neglected (sufficiently small drops or similar 
fluid densities). A final section will be devoted to the stability of 
axisymmetric sessile drops on thin discs. A semi-quantitative 
analysis shows that, under certain conditions, it may be that the 
axisymmetric conformation does not represent the minimum in free 
energy for the system. This fact may facilitate changes in conforma- 
tion which, it is tentatively suggested, may be of importance in 
nature, particularly in the context of cell biology. 

THEORY 

Figure 1 represents an axisymmetric drop of liquid 1, of radius ro, 
resting in the centre of a thin, circular, elastic plate, S, of radius a, 
in the presence of a less dense fiuid 2. For simplicity, the apparent 

FIGURE 1 Axisymmetric sessile drop of liquid ( 1 )  on solid surface (S) in presence 
of fluid (2) and coordinate system ( r ,  z). x and Q, are respectively drop upper surface 
and solid profiles. 
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LIQUID DROPS ON THIN PLATES 263 

contact angle, Oo,  is considered to be <90° and the usual implicit 
assumptions of meniscus calculations, such as homogeneity and 
immiscibility of the phases, are adopted. The free energy of the 
system (F.E.) is considered to be due to the interfacial contribu- 
tions, y s l ,  ys2 and y I 2 ,  the gravitational F.E. associated with the 
centre of gravity of the drop (that of the thin solid is neglected) and 
the elastic stored energy: 

Pg 
2 + - r (x2  - # 2 )  + rE,] dr  + 2n [ 2 y , r ( l +  @:)”’ + rE,] dr  (1) 

For a thin, elastic plate, the stored, elastic energy density, E,, is 
given by:3 

In Eqs. (1) and ( 2 ) ,  # ( r )  and x ( r )  represent respectively the solid 
and liquid upper surface profiles in cylindrical coordinates ( r ,  z ) ,  
the suffix r has its usual meaning of partial differentiation with 
respect to r ,  p is the (positive) density difference and g is 
gravitational acceleration. D and Y are the flexural rigidity and 
Poisson’s ratio of the solid. 

At equilibrium, ET, will be a minimum subject to the constraint 
of constant drop volume V. 

i-4) 

V = 2n r ( x  - #) dr  J” 
Defining J = ET + AV where A is a constant (Lagrange multi- 

plier), we may write: 

J = j s F ( r ,  $ 1  2, # r ,  x r ,  # r r )  dr + r ~ ( r ,  #r j  ~ r r )  dr  (4) 
0 ro 

Using methods of the calculus of variations, as shown in Ref. 1, 
and after some algebra, we obtain six relationships pertaining to  the 
conformation at equilibrium of the system. One of these is omitted 
below since it corresponds simply to the standard capillary equation 
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264 M. E. R. SHANAHAN 

for the profile of an axisymmetric, sessile drop. 

a F  d 
( 3 F )  +- d2 ( i3F),0 a@ dr dr2 
- - 

In Ref. 1, it was incorrectly stated that Eq. (9) was of no use. 
Clearly for a plate, both @ and must be continuous at TO, 
otherwise infinitely sharp folding, or breaking of the material is 
implied. However, relation (9) when applied to the above integral 
definitions, allows us to infer that Grr is also continuous at r,,. 

Both relations (7) and (8) were incompletely interpreted in Ref. 
1. A correct evaluation of these using the above expressions (l), (2) 
and (3) leads respectively to: 

and : 

where superfixes (1) and (2) represent the values taken by the 
functions at r,, when approaching respectively from inside and from 
outside the drop. Although @rr is continuous at ro [by Eq. (9)], Qrrr 

is not necessarily. This is the cause of the error introduced in the 
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LIQUID DROPS ON THIN PLATES 265 

earlier paper where the terms in flexural rigidity were wrongly 
assumed always to be zero (Eqs. (11) and (9) in Ref. 1). 

Both Eqs. (10) and (11) can be simplified by noting that 
xr(ro) = -tan O0 and &(r0) =tan a where O0 and a are the inclina- 
tions of the liquid and the solid at the contact line (see Figure 1). In 
addition it is clear that: 

where R represents the local radius of curvature of the function 

Using these facts, Eqs. (10) and (11) can be reduced to: 

y12 - sin O0 + (ys2 - ysl) . sin a 

Equation (14) can be taken as the modified Young equation for 
the apparent contact angle equilibrium on a thin, elastic solid 
modelled by thin plate theory. Note that, as before, it reduces to 
Young’s equation for an undeformable solid. 

Combination of Eqs (13) and (14) leads to: 

y12 cos( 00 + a) + ys1- Ys2 = 0 (15) 

Clearly ( O0 + a) is the true contact angle measured between the 
solid surface and the tangent to the y12 interface. Young’s equation 
is therefore obeyed [Eq. (15)]. Nevertheless, in practice, measure- 
ment of (@, + a) maybe difficult whereas the apparent contact 
angle, O0, is readily found. Equation (16) perhaps answers 
Bikerman’s query of long  tand ding,^,^ i. e. what balances the liquid 
surface tension component perpendicular to the solid surface at the 
contact line? In the present case, this component is y12 sin(@,+ a) 
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266 M. E. R. SHANAHAN 

and Eq. (16) shows how this is equilibrated by an elastic, flexural 
term due to the deformation of the thin solid. Nevertheless, as 
previously stated in Ref. 1, no real material will behave perfectly as 
a mathematically thin, elastic plate. In all probability, a slight ridge 
will develop in the solid along the contact line, but consideration of 
this aspect represents a topic outside the context of the present 
paper.6 

The last point to be made about Eqs (13), (14) and (16) is that all 
three contain a term invoking changes in radii of curvature of the 
solid at the contact line. Evaluation of this term would require a 
detailed knowledge of the boundary conditions of the problem in 
the general case, i .e. methods of clamping the solid, drop size, 
etc.. . 

INFLUENCE OF PLATE RIGIDITY 

Equations (5) and (6) above may be applied to the relevant 
expressions for free energy and constant volume and two fourth 
order differential equations arise describing the profile of the solid 
surface respectively beneath the axisymmetric sessile drop and 
outside, i.e. for u r 3 r,. These equations, given in Ref. 1, are 
rather complicated and very probably insoluble analytically. 
Nevertheless, both can be solved approximately, the former using 
perturbation theory and the latter by reduction to a form of Euler’s 
differential equation, when terms of small magnitude can be 
neglected. Under these circumstances, to a first approximation, the 
profile under the drop, @, is circular and that outside, now to be 
referred to as @, is logarithmic when the plate is unclamped. Under 
conditions in which gravity is negligible (small drops or similar fluid 
densities), the upper drop surface profile is also circular. We may 
then write the three profiles as: 

Cp =z R - (R2 - r2)’l2 (17) 

In r + constant r: @ =  
(R2  - r;)’” 
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LIQUID DROPS ON THIN PLATES 267 

upper drop surfaces. Since the gravitational F.E. term is neglected, 
substitution of the above and various derivatives into Eqs (l), (2 )  
and (3)  leads to an expression for the function J =  E,+AV. 
Assuming that a >>ro, this may be integrated to give to a first 
approximation : 

J / 2 n  = (ysl + ysz)[R - ( R 2  - r$”’] R 
+ ysz(a2 - rg) + y12[P - (P’ - rg)’”] - P 

1 + A( $P3 + R3 - (P’ - r$)3/2 - (R’ - r$3/2] 

The problem is now to determine the four unknowns ro, R, P and 
A. This can be done using the differential calculus and the method 
of Lagrange multipliers. For J to be a minimum, apart from V being 
constant, we must have: 

Evaluation of Eq. (21) (a) leads simply to: 

A = -2y, , /P 

Equation (21) (b), using Eq. (22) ,  leads to: 

sin 80 Drg 
ysl + ysz - - sin a! ’ Yl2 +R’[R - (R2 - r 3 1 / 2 ] 2  
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268 M. E. R. SHANAHAN 

and similar treatment of Eq. (20) using Eq. (21) (c) produces: 

ysl + yn(i - 2 cos a) + yl2 cos(eo + a) 

In both Eqs (23) and (24), some simplification of the y terms has 
been made using elementary trigonometry. 

In principle, eqs (22), (23) and (24) can be solved simultaneously 
together with the constant volume condition, but in practice it is 
simpler to opt for constant ro and let the volume vary. The following 
solution assumes R >> rO, i.e. that the solid is only relatively slightly 
deformed from its planar aspect. Under these conditions, Eq. (23) 
simplifies to: 

sin 4, 8 0  
YSl + Ys2 - - * Yl2  + 2 = 0 

sin cr ro 

Simplification of eq. (24) and use of Eq. (25) gives: 

= O  
6 D sin2 a 

YSl - YJ;? + Y12 cos 6 0  - 4 
Elimination of H(, leads to a quadratic equation in sin2 a. We can 

thus examine the variation of angle a! as a function of the variables 
of the system and then return to calculate Bo, with the proviso that 
a must be sufficiently small for the above approximations to hold 
reasonably accurately. 

It is interesting to note at this stage that Eq. (25) reduces to 
Laplace’s equation for a liquid lens of “double” lower interface, 
(ysr + ys2), if D-0. Analogously, Eq. (26) reduces to Young’s 
equation if a!-+ 0. 

The above analysis has been applied to the case of a small drop 
(radius r(, = 0.1 cm) of 1-bromonaphthalene resting on a thin mica 
sheet. Young’s modulus, E ,  was taken to be 10GPa and Poisson’s 
ratio, Y ,  1/3. The values of Y , ~  and yB were taken to be 
respectively 44.6 and 120 mJ.m-2.7 

Assuming that 1-bromonaphthalene is an essentially apolar liq- 
uid, and using Fowkes’ relationship for interfacial tensions employ- 
ing the geometric mean,’ we find yS, to be 91.5 mJ.mp2. Since the 
largest possible value of a will correspond to zero flexural rigidity of 
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269 LIQUID DROPS ON THIN PLATES 

the plate, we may employ Neumann’s triangle’ to establish the 
upper limit (taking into account that the lower interface is “double” 
since there are two sides corresponding to ysl and to ysz). From this 
we find a = 8.7” and Bo = 46.1”. This assumption of R >> r,, or 
relatively little plate deformation, will therefore be reasonably valid 
for all but the very thinnest of mica sheets. The above analysis was 
therefore employed to consider the variations of both a and 0, as a 
function of thickness of the mica. The results are shown in Figure 2. 
The lower abscissa refers to actual plate thickness, t ,  and the upper 
to the value of the flexural rigidity, D. It can be seen that the effect 
of plate bending is practically negligible for thicknesses greater than 
about 1 0 y m  where the solutions rapidly tend to those of the 
undeformable solid ( a  = 0”, Bo = 50.3”), but that below this value a 
increases and Bo decreases tending towards the limiting values given 
by Neumann’s triangle for the liquid lens corresponding to the plate 
of t+O, but retaining both ySl and yn interfaces. Values of a and 

k I 
I \ \  

m- Neumann’s Triangle 

FIGURE 2 Angles LY and 8, as a function of plate thickness and flexural rigidity, 
for drop of 1-bromonaphthalene on mica (see text for details). 
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210 M. E. R. SHANAHAN 

13" corresponding to c 6 3 ,urn have been extrapolated since the 
above simplified analysis starts to introduce non-negligible error in 
this range. 

It may be seen in this example that the modification to Young's 
equation is very small when considering practical, every day values 
of apparent contact angle, 8(,. The error involved in neglecting a is 
minute. Nevertheless, the effect of deformation of the solid can be 
significant on a microscopic scale, and this, it is conjectured, may be 
of importance in cellular biology. The following section will attempt 
to elucidate this aspect semi-quantitatively. 

AXISYMMETRIC DROP STABILITY 

The above, and the previous paper,' have analysed the system 
plate/drop considering that it is axisymmetric. It is assumed that, at 
equilibrium, the final configuration adopted will be that shown in 
Figure 3 (a) where the initially flat, thin, plate has a slight 
axisymmetric depression in its centre accommodating the liquid 
drop. That axial symmetry be the true state of equilibrium for either 
a liquid drop on an undeformable solid, or a liquid lens, i .e. a drop 
resting on an immiscible, denser liquid substrate, is clear. However, 
in the intermediate case of a thin solid, this is not so clear. The 

FIGURE 3 
configuration, (b) cylindrical configuration (see text for details). 

Schematical representation of drop on thin disc: (a) axisymmetric 
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LIQUID DROPS ON THIN PLATES 271 

semi-quantitative argument below is intended to illustrate this 
point. 

We shall on one hand consider the total F.E. of a system 
plate/drop assuming an axisymmetric configuration and, on the 
other hand, a possible different configuration; that of a similar drop 
resting in a channel in the (still circular) plate produced by cylindrical 
bending. This latter is shown schematically in Figure 3(b). The two 
systems will now be referred to respectively as (a) and (b). Both 
cases are considered in the absence of a gravitational term. Clearly 
the configuration adopted by the system at equilibrium will be  that 
which minimises its overall F.E.. There is no guarantee that (b) will 
represent the conformation of absolute minimum F.E. ,  but if its 
F.E. is inferior to that of (a), then it will be a more likely, i.e. more 
stable, configuration and, more important, it will show that the 
axisymmetric form is not the one adopted naturally. The argument 
hinges on the fact that the logarithmic form adopted in (a) by the 
plate outside the drop, function 0, implies that there is strain 
energy associated with the entire deformed plate, whereas, apart 
from the cylindrically bent channel in (b), the rest of the plate is 
unstrained. The strain energy of (b) can then be less than (a). 
Nevertheless, the hypothetical change of (a) to (b) also introduces 
potential changes in F.E. due to y terms. If any such increase is less 
than the decrease in strain energy, (b) will present a lower total 
F.E. This resumes the argument qualitatively. 

We now consider that ysl and ysz are equal. This implies that (i) 
B0 will be close or equal to 90", (ii) r, = P and (iii) that any changes 
in the surface area of the solid disc in contact with the liquid are not 
associated with changes in total F.E. We retain the same nomencla- 
ture as before when referring to the axisymmetric case and 
introduce the same symbols but with suffix c for equivalent variables 
in the cylindrically bent case (see Figure 3). 

If the radii of curvature R and R, are large and the volume of the 
drop, V ,  is to stay constant during the hypothetical transformation 
from (a) to (b), it is readily shown that: 

In each of these expressions, the first term in brackets refers to 
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212 M. E. R. SHANAHAN 

the volume of the drop above the horizontal marked h in Figure 3, 
and the second term that underneath. Defining P, = P( 1 - E )  and 
R, = R(1-  6) where E and S are increments, Eq. (27) leads to the 
fact that, to first order: 

1 S =  4+- & - -  I :;I 3 
The F.E. of (a) pertaining only to y12 and D (since gravity is 

neglected and changes in contact area are of no consequence, ysl 
equalling ys2) can be written [cf. Eq. (20)]: 

( R 2  - P2) 
y12P2 + D - [ R[ (1 + v )  R - ( R 2  - P2)11’] + 

(29) 
Consider now the equivalent F.E. for case (b). The extra surface 

area of the y,2 interface in this configuration is that shown by s in 
Figure 3(b) and resembling two dentures. Its value is to a first 
approximation nP;1/2 R,. The F.E. due to plate bending will involve 
only the cylindrical channel shown shaded in Figure 3(b), and since 
only one radius of curvature is invoked (the other being infinite), 
the expression for E, in Eq. ( 2 )  only contains the first term in 
brackets. Evaluation of the stored elastic energy along the whole 
channel length (both beneath and outside the drop) assuming 
constant radius of curvature, R,, is then simple. We can thus obtain 
an expression for E:., the F.E. involving only ylZ and D: 

EL = n P ~ y , ,  2 + - + -. sin [ R,. 
Clearly if E‘ > EL, the cylindrical configuration (b) will be more 

stable than the axisymmetric case (a). Using relation (28) in Eq. 
(30) and simplifying (29) and (30) further using the assumption of 
R >> P and R, >> P,, it can be shown that the condition E‘ > EL is 
equivalent to: 

2 0  P 3  a 
- R 2  { P  + s ( 5  - 3Y) - -} 3 n  

Under conditions in which E is very small and the interfacial 
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LIQUID DROPS ON THIN PLATES 273 

tension y12 is negligible, relation (31) can be simplified much further 
still to obtain: 

a 
3x 

P 3 - = 0. la  

Remembering that in the above derivation, it was assumed that 
P = r,, we can conclude that if the drop diameter is greater than ca. 
10% of the plate diameter, it may be possible to have the cylindrical 
conformation representing a lower state of F.E. than the axisym- 
metric case and therefore a more stable configuration. The above 
analysis is necessarily a little sketchy since a rigorous, analytical 
treatment of the non-axisymmetric situation would be very difficult, 
if not impossible, mathematically. However, the point to be made is 
that sessile drops posed on thin plates are not inevitably always 
going to lead to an axisymmetric configuration, although our 
hypothetical cylindrically bent system does not necessarily represent 
the most favourable alternative. It is simply a mathematical model. 
Factors favouring the non-axisymmetric case will be non- 
axisymmetric clamping, low but non-zero plate ragidity, similarity in 
values of ysl and ys2 and a low value of ylz. Many of these factors 
are likely to be met in biological systems at a cellular level. Since 
the difference in F.E. of systems in the axisymmetric and non- 
axisymmetric conformations will generally be small, this should 
facilitate the transformation between them. It is therefore conjec- 
tured that a suitable combination of values of the parameters 
involved will tend to facilitate mobility at a cellular level. Changes 
in shape of cell walls will be rendered easier. Fanciful extrapolation 
leads one to consider that an eventual tool for reducing cell mobility 
(in the spread of cancer?) could be the successful modification of D 
or y terms rendering cell walls less manoeuvrable. This, however, is 
sheer conjecture and best left to the cell biologist to consider 
seriously. 

CONCLUSION 

The system consisting of an axisymmetric sessile drop centred on a 
circular, thin, elastic plate in the presence of a second, immiscible 
fluid has been considered from three aspects. In the first, the 
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274 M. E. R. SHANAHAN 

equations describing Young’s relationship for contact angle equi- 
librium have been rederived correcting an error in interpretation of 
an earlier paper. Secondly, a quantitative analysis has been effected 
to assess the variations in apparent contact angle due to deforma- 
tion of the solid substrate. Finally, a semi-quantitative analysis of 
the stability of the axisymmetric configuration has been undertaken. 
It shows that under certain conditions, it may be that axisymmetry 
does not represent the most stable conformation of the drop/plate 
system. A conjectured consequence is the r61e this instability may 
play in cell biology. 
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